Mit Tempo aus der Krise - Transformation des Energiesystems aus Sicht eines Regulierers

Dr. Jörg Mallossek, Referatsleiter 610 - Wirtschaftliche Grundsatzfragen der Energieregulierung

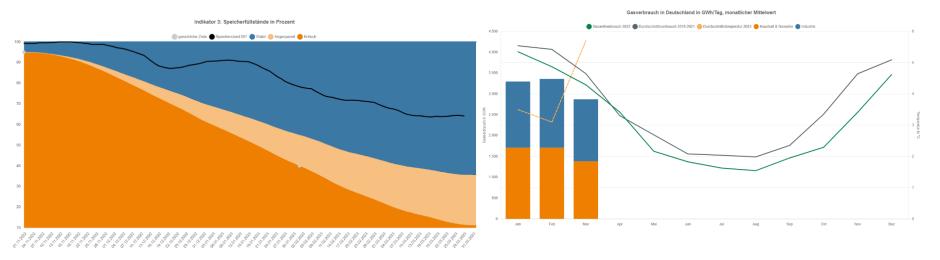
Energiesysteme im Wandel - Gas, Strom, Verkehr, Wärme in Hamburg Hamburg, 27.04.2023

Themen

- Mit Tempo aus der Krise!
- Versorgungssicherheit Strom
- 3. Übertragungsnetzausbau
- 4. Transformationsaufgaben
- Zukunft der Verteilernetze

2

Mit Tempo aus der Krise!


2022 war geprägt von den Bemühungen zur Verhinderung einer Energieversorgungskrise

- Speichergesetz: Füllstandsvorgaben für Gasspeicher und dreistufiges Befüllungsverfahren
- 2. Schaffung neuer Erdgasimportquellen
 - Bau von LNG-Terminals bzw. FSRU → aktuell drei in Betrieb
 - Erhöhung von grenzüberschreitenden Kapazitäten z.B. nach Frankreich oder Belgien
- 3. Weiterbetrieb der drei verbleibenden Kernkraftwerke bis 04/23
- 4. Befristete Reaktivierung von Reserve-Kohlekraftwerkskapazitäten sowie von Anlagen, denen 2022 und 2023 ein Kohleverstromungsverbot ausgesprochen wurde

Mit Tempo aus der Krise!

Die Lage konnte nachhaltig stabilisiert werden

- → Gasspeicherstände waren durchgehend auf einem hohen Niveau
- → Strukturelle Gasverbrauchsreduktionen sind zu erkennen
- → Stromversorgung war zu keinem Zeitpunkt gefährdet

Mit Tempo aus der Krise!

Transformation der Energiesysteme konnte in 2022 nicht mit dem erforderlichen Tempo angegangenen werden

- → Politscher Handlungsdruck ist hoch
- → Zügige Reformen sind erforderlich
- Dennoch: langfristig tragfähige Lösungen sind geboten, keine Schnellschüsse

Die Politik und das BMWK müssen nun Regelungen schaffen

- → BNetzA ist in die Diskussionen eingebunden
- → BNetzA beteiligt sich im Rahmen ihrer Festlegungskompetenzen

Versorgungssicherheit Strom

Versorgungssicherheitsbericht 2023: Versorgungssicherheit kann im betrachteten Zeitraum 2025 bis 2031 jederzeit gedeckt werden, wenn...


- 1. ein EE-Ausbau von ca. 123 GW (2021) auf 360 GW (2030) bzw. **386 GW** (2031) erfolgt
- die Kapazität an flexiblen Verbrauchern auf 58,5 GW und an Netzersatzanlagen auf 4,5 GW steigt
- 3. ca. **17 GW** bis **21 GW** an Erdgaskraftwerken und **7 GW** Biomassekraftwerken gemäß EEG-Ausschreibungen bis 2031 errichtet werden
- Transformationsherausforderungen sind immens
- Transformation beschränkt sich nicht nur auf den Strombereich

Ausbau der Stromübertragungsnetze bleibt Kernaufgabe

- → Transportbedarf nimmt weiter zu, insbesondere in Nord-Süd-Richtung
- häufigere Netzengpässe
- Netzengpassmanagementbedarf
 steigt auch zukünftig deutlich an

Entwicklung der Redispatchmaßnahmen im deutschen Übertragungsnetz: Gesamtvolumen in GWh

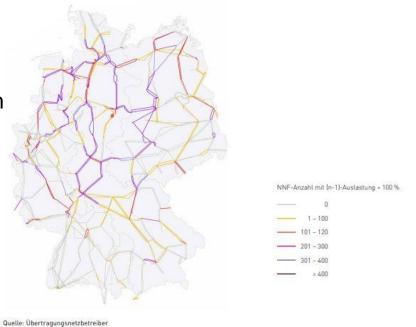


Abbildung 56: Auswertung der Häufigkeit von Auslastungen über 100 % bei Ausfall eines Netzelements ((n-1)-Fall)

im Startnetz mit Interkonnektoren und Maßnahme M351 Lübeck/West - Göhl

→ Lösung: Netzausbau!

7

Ausbaubedarf und Investitionskosten aus dem NEP 2035

Längenangaben Start- und Zubaunetz im NEP 2035 (2021)

Angaben in km	AC-Verstärkung		DC-Verstärkung				
	Zu-/Umbeseilung	Ersatz-/ Parallelneubau	Zu-/Umbeseilung	Ersatz-/ Parallelneubau	AC-Neubau	DC-Neubau	Summe
Startnetz	845	2.150	300	40	640	2.125	6.100
Zubaunetz	3		200	50	50 5		
A 2035	1.250	2.115	0	540	380	1.310	5.595
B 2035	1.250	2.115	0	540	380	1.310	5.595
C 2035	1.250	2.240	0	540	380	1.835	6.245
B 2040	1.475	2.300	0	540	520	1.835	6.670
Start- und Zubau	unetz	*	21	W			
A 2035	2.095	4.265	300	580	1.020	3.430	11.690
B 2035	2.095	4.265	300	580	1.020	3.430	11.690
C 2035	2.095	4.390	300	580	1.020	3.960	12.345
B 2040	2.320	4.450	300	580	1.160	3.960	12.770

Geschätzte Investitionskosten im NEP 2035 (2021)

Angaben in Mrd. EUR	A 2035	B 2035	C 2035	B 2040
DC-Zubaunetz	13,8	13,2	17,2	17,2
DC-Startnetz	20,3	20,3	20,3	20,3
AC-Zubaunetz*	22,4	22,3	22,7	23,6
AC-Startnetz*	18,8	18,8	18,8	18,8
Summe (gerundet)	75,0	74,5	79,0	80,0

^{*} inkl. Anlagen zur Blindleistungskompensation

- → Nach Szenario B (mittlerer Pfad) bis zu 12.770 km Ausbaubedarf bis 2040
- → Nach Szenario B bis zu 80 Mrd. € Investitionsvolumen bis 2040

Investitionen in Netze sind möglich

- Investitionen werden üblicherweise als CAPEX aktiviert und sind über den Kapitalkostenaufschlag direkt erlösrelevant und einschließlich EK-Verzinsung auf Plankostenbasis refinanziert.
- Hinsichtlich der **OPEX** setzt das <u>Budgetprinzip</u> richtige Anreize.
- Wenn der EK-Zinssatz zu hoch ist das level playing field von OPEX- und CAPEX-intensiven Lösungen gestört.
- Die Inflation wird über die Regulierungsformel auch für die CAPEX berücksichtigt. Das sich auch wegen der Inflation seit Anfang 2022 deutlich geänderte Zinsumfeld beobachtet die BNetzA aber genau.
- BNetzA stellt weiterhin sicher, dass die Voraussetzungen des EnWG einer fortgesetzt "angemessenen, wettbewerbsfähigen und risiko-angepassten Verzinsung des eingesetzten Kapitals" erfüllt bleiben.

9

Netzausbaukosten fallen regional ungleich verteilt an

- → Vereinheitlichung der ÜNB-NE: ÜNB-Netzentgelte ab 2023 bundesweit einheitlich
- Netzausbaukosten im Übertragungsnetz daher bundesweit gleichmäßig verteilt; Netzausbau im Übertragungsnetz trägt nicht mehr zu regionaler Spreizung der Netzentgelte bei

Genehmigungsverfahren und Planungsprozess werden beschleunigt

- → Mit der Umsetzung der NotfallVO in nationales Recht wird im zukünftigen § 43m EnWG auf eine Umweltverträglichkeitsprüfung und eine artenschutzrechtliche Bewertung verzichtet
- → Verfahren bis zum 23.06.2024 können berücksichtigt werden

Beschleunigter EE-Ausbau Wasserstoffmarkthochlauf

Langfriste Kraftwerksstrategie Reform des Wärmemarktes

Nachfrageflexibilisierung Reform des Verkehrs

Beschleunigter Ausbau der Erneuerbaren Energien

- Neuer Fördermechanismus über Contracts for Differences (CfDs) in der Diskussion -> Vorschlag der EU-Kommission
- Bessere Zugänglichkeit zu Power-Purchasing-Agreements (PPAs) in der Diskussion -> Vorschlag der EU-Kommission
- 3. Schnellere Genehmigungsverfahren → § 6 WindBG, § 72a WindSeeG, § 14b UVPG
- 4. Flächenpotenziale für EE müssen deutlich besser genutzt werden → Landesregeln, Raumnutzungsordnung

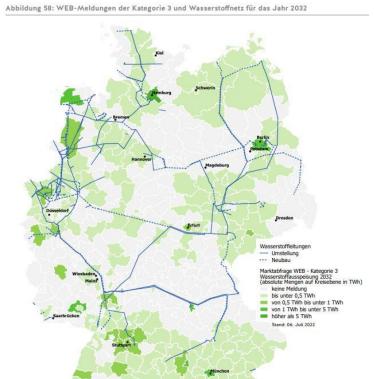
Zubau steuerbarer Kapazitäten

Neue Kraftwerke

Speicher

Flexible Lasten

- 1. Steuerbarere Kapazitäten sind zur Deckung der Residuallast langfristig erforderlich
 - Strommarkt sollte Investitionsanreize setzen → aktuell jedoch wenig Vertrauen
 - Daher: Kapazitätsmechanismen sind in der Diskussion
- 2. Regionale Verteilung der Kapazitäten muss bedacht werden
 - Engpässe sollen nicht weiter verstärkt werden
 - Systemdienstleistungen müssen weiterhin erbracht werden


Integration flexibler Verbraucher in Netz und Markt

- Hochlauf flexibler Verbraucher (Wärmepumpen und Ladeeinrichtungen) stellt Verteilernetze absehbar vor Herausforderungen
 - → vergleichsweise hohe Bezugsleistung in der Niederspannung
 - → hohe Gleichzeitigkeiten in der Netznutzung
- Verteilernetzbetreiber brauchen Instrument, das den schnellen Anschluss dieser Verbraucher sicherstellt
 - → Festlegungen nach § 14a EnWG zur Integration von steuerbaren Verbrauchseinrichtungen und steuerbaren Netzanschlüssen
- Ziel: Ausgewogenes System, das Netzsicherheit gewährleistet ohne nennenswerten Komfortverlust – und Voraussetzungen schafft für Marktintegration
- Zeitplan:
 - Bis Ende Jan 2023: 1. Konsultation der Eckpunkte
 - Sommer 2023: 2. Konsultation des konkretisierten Modells
 - Ende 2023: Abschluss des Festlegungsverfahrens

Wasserstoffmarkthochlauf

- Nationale Wasserstoffstrategie zeigt den Weg in die Wasserstoffwirtschaft
 - 1. Verfügbarkeit von H2 erhöhen
 - 2. H2-Anwendung fördern
- 2. Kernherausforderung ist Netzaufbau
 - 1. Startnetz muss definiert werden
 - 2. H2-Netzentwicklungsplanung
 - Netzfinanzierung muss geklärt werden
- 3. EU-Gaspaket wird mittelfristig Übergangsregulierung ablösen

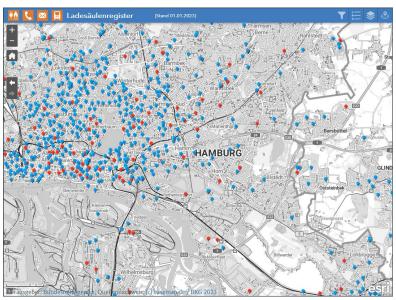
Mögliches Startnetz aus H2-Variante des Gas-NEP 2022-32

Wärmewende

Gebäudeenergiegesetz

- Technologieoffener Ansatz
- 65% EE als Maßgabe bei neuen Heizungen ab 2024
- Nutzung fossiler
 Energieträger bis höchstens 2045

Wärmeplanung?


- Angestrebtes Ziel ist Dekarbonisierung
- Aufgaben ist, verschiedene Wärmeträger strategisch übereinbringen
- Verantwortlichkeiten der Transformation klären

- Umbau des gesamten bestehenden Wärmeversorgungssystems
- → Fokus liegt auf Strom und Fernwärme
- → Fernwärme in Ballungsgebieten besonders im Fokus
- → Herausforderung für Gasverteilernetzbetreiber

Verkehrswende - Elektromobilität

- Zielsetzung Bundesregierung 2030:
 - 15 Mio. elektr. PKW (2023 ~ 1 Mio.)
 - 1 Mio. öffentl. Ladepunkte (2023 ~ 80.000)
- Im Netz angeschlossene Ladeleistung vervielfacht sich auf ~ 80-100 GW (privat + öffentlich)
- Neue Herausforderungen für Stromnetzbetreiber
- Neue Geschäftsmodelle und Potentiale für Verbraucher
- BNetzA führt Register zur öffentlichen Ladeinfrastruktur

Herausforderungen	Potentiale	
 Hohe Gleichzeitigkeiten & Lastspitzen Unsicherheiten bei regionalem Hochlauf Lastprofile verändern sich stark Hohe Zunahme von Netzanschlussanfragen → 14a EnWG → Vorausschauender Netzausbau 	 Effizientere Nutzung EE-Erzeugung Bidirektionales Laden Vermarktung am Spotmarkt Systemdienstleistungen 	

Zukunft der Verteilernetze

Transformation des Energiesystems findet auch im Verteilernetz statt

- 1. Integration von zusätzlichem Verbrauch: Hochlauf von Ladeinfrastruktur und Wärmepumpen
- 2. Integration von PV-, Biomasse- und Windkraftanlagen
- "elektrotechnischer Wandel": Vom Synchrongenerator (konventionelle Kraftwerke) zur Leistungselektronik (Wind- und PV-Anlagen)

Herausforderungen:

- Ausreichende Netzkapazitäten bereitstellen
- Bestehende Netze bestmöglich nutzen
- Sicherstellung der Systemstabilität

Zukunft der Verteilernetze

Aufgaben der Betreiber von Elektrizitätsverteilernetzen ergeben sich hauptsächlich aus §§ 14, 14d und 14e EnWG

- Teilweise entsprechende Anwendbarkeit der ÜNB-Regelungen im Rahmen der Verteilungsaufgaben
- Berichtspflicht über Netzzustand und Netzausbauplanung
 - Netzausbaumaßnahmen,
 - Netzkarten
 - Planungsgrundlagen
 - Entwicklung von Ein- und Ausspeisung
 - Etc.
- Veröffentlichungspflicht auf gemeinsamer Plattform
- Unterstützungspflicht ggü. ÜNB/vorgelagerter NB

Zukunft der Verteilernetze

Erwarteter Netzausbaubedarf – Ausblick 2032

Verteilernetzausbaubedarf mit Erhöhung der Übertragungskapazität in Mrd. Euro

Neubau, Ersatz mit Erhöhung der Übertragungskapazität, Verstärkung und Optimierung

	Maßnahmenanzahl	Netzausbaubedarf in Mrd. Euro
gemeldete Netzausbaumaßnahmen bis 2032	3337	16,42 Mrd. Euro
aggregierte 10-Jahresplanung unterer Netzebenen		25,84 Mrd. Euro
Gesamt:		42,27 Mrd. Euro

Quelle Bundesnetzagentur: Abfrage 2022 zum Zustand und Ausbau der Verteilernetze / 82 Verteilernetzbetreiber

Vielen Dank für Ihre Aufmerksamkeit!

Dr. Jörg Mallossek Referatsleiter 610 - Wirtschaftliche Grundsatzfragen der Energieregulierung